Madent Al-Elem University College
College Of Engineering
Civil Engineering Department

Reinforced concrete design I
Subject: Analysis\& Design of Singly beam

Monthly Exam
Time: 1 hr and 15 min
Stage: 3rd

Typical Solutions

Note: use fc` $=25 \mathrm{MPa}$ and $\mathrm{fy}=420 \mathrm{Mpa}$ for all questions Provide enough drawings to illustrate your answer for steel reinforcement.

Q1 (50\%): check the adequacy of the beam shown below according to ACI requirement. Neglect the self-weight.

$\longmapsto 3.5 \mathrm{~m}$

Solution:

1. Calculate $\rho=\frac{A s}{b d}$

As $=4 \times \frac{\pi}{4} \times 16^{2}=804.24 \mathrm{~mm}^{2}$
$\mathrm{d}=550-40-10-\frac{16}{2}=492 \mathrm{~mm}$
$\rho=\frac{804.24}{350 \times 492}=4.67 \times 10^{-3}$
$\rho_{\max }=0.85 \beta_{1} \frac{f c^{`}}{f y} \frac{\in u}{\epsilon u+0.004}=0.0184$
$\rho<\rho_{\max }$ O.k
2. Calculate \varnothing
$\mathrm{a}=\frac{\mathrm{As} * \mathrm{fy}}{0.85 \mathrm{fc} * \mathrm{~b}}=\frac{804.24 * 420}{0.85 * 25 * 350}=45.11 \mathrm{~mm}$
$\mathrm{c}=\frac{a}{\beta 1}=\frac{45.11}{0.85}=53.42 \mathrm{~mm}$
$\epsilon_{\mathrm{t}}=\frac{d t-c}{\mathrm{c}} \epsilon_{\mathrm{u}}=\frac{492-53.42}{53.42} \times 0.003=0.0246>0.005$
$\therefore \emptyset=0.9$
3. Calculate $\emptyset \mathrm{Mn}$
$\emptyset \mathrm{Mn}=\emptyset \operatorname{Asfy}\left(\mathrm{d}-\frac{a}{2}\right)$
$\emptyset \mathrm{Mn}=0.9 \times 804.24 \times 420 \times\left(492-\frac{45.11}{2}\right) \times 10^{-6}$
$\emptyset \mathrm{Mn}=142.6 \mathrm{kN} . \mathrm{m}$
4. Find Mu and compare it with $\emptyset \mathrm{Mn}$
$\mathrm{W}_{\mathrm{D}}=3 \mathrm{kN} / \mathrm{m}_{\mathrm{L}}=2.5 \mathrm{kN} / \mathrm{m}$
$\mathrm{Wu}=1.2 \mathrm{~W}_{\mathrm{D}}+1.6 \mathrm{~W}_{\mathrm{L}}=1.2 \times 3+1.6 \times 2.5=7.6 \mathrm{kN} / \mathrm{m}$
$\mathrm{Mu}=\frac{w_{u} \times \ell^{2}}{8}=\frac{7.6 \times 3.5^{2}}{8}=11.64 \mathrm{kN} . \mathrm{m}<\emptyset \mathrm{Mn}$
The section is O.k

Q2 (50\%): Design a cantilever rectangular reinforced concrete beam shown in Figure below.
Assume that the designer intends to use:

- $\mathrm{Mu}=220 \mathrm{kN} . \mathrm{m}$
- A width of 400 mm and a height of 500 mm .
- Rebar diameter 25 mm for longitudinal reinforcement.
- Rebar diameter 10 mm for stirrups.
- Two layers of reinforcement.

Solution:

1. Compute required factored applied moment Mu
$\mathrm{Mu}=220 \mathrm{kN} . \mathrm{m}$
2. Compute the effective depth (d)
$\mathrm{d}_{\text {for two layer }}=\mathrm{h}$ - cover-stirrups- bar diameter- $\frac{\text { spacing between layers }}{2}$
$\mathrm{d}=500-40-10-25-12.5=412.5 \mathrm{~mm}$
3. Compute $\rho_{\text {max }}, \rho_{\text {min }}$
$\rho_{\max }=0.0184 \& \rho_{\min }=3.33 \times 10^{-3}$
4. Compute ρ
$\mathrm{m}=\frac{f y}{0.85 f c}=19.76, \mathrm{R}=\frac{M_{u} \times 10^{6}}{\varphi b d^{2}}=3.59$
$\rho=\frac{1}{\mathrm{~m}}\left(1-\sqrt{1-\frac{2 \mathrm{Rm}}{\mathrm{fy}}}\right)=9.425 * 10^{-3}$
$\rho_{\min }<\rho<\rho_{\text {max }}$ O.K
5. Compute the required steel area (As):

As $=\rho \times b \times d=9.425 \times 10^{-3} \times 400 \times 412.5=1555.88 \mathrm{~mm}^{2}$
6. Compute required Number of rebars:

No. of rebars $=\frac{A s}{\text { Abar }}=\frac{1555.88}{\frac{\pi}{4} * 25^{2}}=3.16 \approx 4$
Use $4 \emptyset 25 \mathrm{~mm}$
As $_{\text {provided }}=4 \times 491=1964 \mathrm{~mm}^{2}$
7. Check if the available width "b"
$b_{\text {required }}=175 \mathrm{~mm}<400 \mathrm{~mm}$ O.k

8. Check the assumption of $\emptyset=0.9$
$\mathrm{a}=97 \mathrm{~mm}, \mathrm{c}=114 \mathrm{~mm}, \mathrm{dt}=437.5 \mathrm{~mm} \epsilon_{\mathrm{t}}=8.5 \times 10^{-3}>0.005$
$\therefore \emptyset=0.9$
9. Draw your final detail section

